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Abstract
We consider the univariate two-scale refinement equation p(x) = EkN=0 ckW(2x -
where cO,..., CN are complex values and E ck = 2. This paper analyses the correlation
between the existence of smooth compactly supported solutions of this equation and the
convergence of the corresponding cascade algorithm/subdivision scheme. In the work [11]
we have introduced a criterion that expresses this correlation in terms of the mask of the
equation. It is shown that the convergence of subdivision scheme depends on values that
the mask takes at the points of its generalized cycles. In this paper we show that the
criterion is sharp in the sense that an arbitrary generalized cycle causes the divergence
of a suitable subdivision scheme. To do this we construct a general method to produce
divergent subdivision schemes having smooth refinable functions. The criterion therefore
establishes a complete classification of divergent subdivision schemes.

1 Introduction
Refinement equations have been studied by many authors in great detail in connection
with their role in the theory of wavelets and of subdivision schemes in approximation
theory and design of curves and surfaces (see [1-14]). In this paper we study a criterion
of convergence of subdivision processes having smooth refinable functions. This criterion
was presented in the work [11]. In particular we show that the criterion is sharp in
the sense that each if its cases is realized. To do this we provide a general procedure
for constructing divergent subdivision schemes (or cascade algorithms) corresponding to
smooth refinable functions.

We restrict ourselves to univariate equations with a compactly supported mask.
Through the paper we denote by T = ]R/27rZ the unit circle, by 7-H the space of en-
tire functions on C, by C' the space of 1 times continuously differentiable functions on
R, by Co = C the space of continuous functions, by C0 the space of compactly supported
functions from C', and by C0 the space of compactly supported continuous functions on
]R. A sequence {fk} converges to zero in C' if it converges to zero in C' and the supports
of fk, k E N are uniformly bounded.

Consider a refinement equation

N

V(x) = ZckW(2x - k), (1.1)
k=O

394
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where ck E C, -k Ck = 2. The trigonometric polynomial m(0) = 1 EN-o cke- k is
the mask of this equation. It is well known that a C0-solution of this equation (refinable
function), if it exists at all, is unique up to normalization and has its support on the
segment [0, N]. For a given mask m we denote by [m] the corresponding refinement
equation. Let us also define the following subspaces of the space Co:

M, = {f E Co I f()(1- e- ) E 'H}, L' = {f E Co I f((-) C M'}, 1 > 0.

In other words the Fourier transform of a function from M1 has zeros of order > 1 + 1
at all the points 27rk, k C Z. The Fourier transform of a function from L' has zero at
the point ý = 0 and has zeros of order > 1 + 1 at all the points 2qrk, k E Z \ {0}. Let us
also denote L = C0 = M 0 .

The cascade algorithm for refinement equations is the construction of the sequence
f= - Tfn- 1 for some initial function fo E Co, where Tf(x) = Ek Ckf (2x - k) is the
subdivision operator associated to equation (1.1). This operator is defined on the space
Co and preserves all the subspaces C', L'. If f, converges in the space Col to a function
SE Cl (1 > 0), then obviously it converges in Cl and W is the solution of (1.1). Moreover,
in that case the function g = fo - W necessarily belongs to 12 (see [1], [5]). Thus we say
that the cascade algorithm converges in C' if T'g --+ 0, n -+ oc for any g E 1'. Properties
of the cascade algorithms have been studied by many authors in various contexts. This
algorithm gives a simple way for approximation of refinable functions and wavelets. On
the other hand the convergence of the cascade algorithm is equivalent to the convergence
of the corresponding subdivision scheme ([4]). For a given mask m(ý) we say that the
subdivision process {m} converges in C' if the corresponding cascade algorithm or the
corresponding subdivision scheme converges in that space.

It is clear that if a subdivision process converges in C', then the corresponding re-
finement equation has a C0-solution. In general the converse is not true, corresponding
examples are well-known (see [1], [2], [13] for general discussions of this aspect). A nat-
ural question arises; under which extra conditions the solvability of a refinement equation
implies the convergence of the subdivision process?
1) A necessary condition (first introduced in [6]):
If a subdivision process {m} converges in C', then its mask can be factored as

m(•)= (1+ e-iý "1 +1r.

M(0 2 ) a(ý) (1.2)

for some trigonometric polynomial a(s). In particular the condition

m() = (1 2-)a(ý) > 3c2k ZC2k+i =1 (1.3)
k k

is necessary for the convergence of the subdivision process in C. Let us remember that for
the existence of smooth solutions of refinement equation this condition is not necessary
(there is a weaker condition for this, see [10]).

For a given mask m denote by 1(m) the maximal integer I such that condition (1.2)
is satisfied. So if a subdivision process {m} converges in Ck, then k < 1(m).
2) A sufficient condition (introduced in [1], developed in [8],[14],[7],[9]):
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Suppose a mask m satisfying 1.2 for some 1 > 0 has neither symmetric roots nor cycles;
then if the equation [m] has a C1 -solution, then the process {m} converges in C1.

Let us recall the notation used in this statement. If, for a trigonometric polynomial
p(ý) and for some a E T, we have p(a/2) = p(wr + a/2) = 0, then {a/2, 7r + a/2} is a
pair of symmetric roots for p(6). In order to be defined we set that for any a C T the
element a/2 E T has the corresponding real value from the half-interval [0, 7r). Further,
a given set b = {1-l , 0/} C T, where n > 2, is called cyclic if 2b = b, i.e., 2f0j = Oj+1
for j = 1,... , n (we set 0,n+, = /31). We consider only irreducible cyclic sets, for which
all the elements are different. Note that if two cyclic sets do not coincide, then they are
disjoint. A cyclic set b is called a cycle of a trigonometric polynomial p if p(b + 7r) = 0,
i.e., p(3 + 7r) = 0 for all•3 E b.

It is well known that the sufficient condition (2) for a mask m is equivalent to the
stability of the corresponding refinable function (i.e., integer translates of the refinable
function possess Riesz basis property in L2 (R)). It is also equivalent to say that the mask
satisfies Cohen's criterion (see for example [5, Proposition 2.4]). Actually condition (2)
was formulated for the case 1 = 0 only, but it can be easily extended to general 1. It is
seen, for instance, from Theorem 2.2 of this paper.

Thus we have one necessary and one sufficient condition for the convergence of sub-
division processes having smooth refinable functions. It was a natural problem to fill this
gap and to elaborate a criterion in terms "if and only if". In 1998 two attempts were
made independently from each other and almost simultaneously. They were the work
[9] by M. Neamtu and my work [11]. Those two criteria were very similar, but different.
Moreover, it turned out that our results were actually incompatible. We will discuss this
aspect after formulating the main result of the work [11].

2 A criterion for convergence

We give a criterion of convergence of a subdivision process under the condition that the
corresponding refinement equation has a smooth solution. We will see that symmetric
roots of mask do not influence the convergence of subdivision processes. This means
in particular that the stability of solutions is not necessary for the convergence. The
convergence entirely depends on values of the mask at the points of so-called generalized
cycles.

Everywhere below we consider trigonometric polynomials without positive powers,
i.e., polynomials of the form p(6) = Ek'O ake-iký. As usual we set deg p = N (assuming
aoaN 0 0). To a given value a E T we assign a binary tree denoted in the sequel by T7.
To every vertex of this tree we associate a value from T as follows: put a at the root,
then put a/2 and ir + a/2 at the vertices of the first level (the level of the vertex is the
distance from this vertex to the root. The root has level 0). If a value -y is associated to a
vertex on the n-th level, then the values -y/2 and 7r + -y/2 are associated to its neighbors
on the (n + 1)-st level. Thus there are the values A + 2k, k = 0,.. ,2 - 1 on the
n-th level of the tree TZ. A set of vertices A of the tree T, is called a minimal cut set if
every infinite path (all the paths are without backtracking) starting at the root includes
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exactly one element of A. For instance the one-element set A = {root} is a minimal cut
set. Every minimal cut set is finite.

Definition 2.1 A set {f31,' ,Ajn} C T is called a generalized cycle of a polynomial
p(s) if this set is cyclic and for any j = 1,. , n the tree Tf+, possesses a minimal cut
set Ai such that p(Aj) = O.

The family {A1 ," A,,} is said to be sets of zeros of the generalized cycle b. Let us
remark that for a given generalized cycle the set of zeros may not be defined in a unique
way. Any (regular) cycle of p(s) is also a generalized cycle, in this simplest case each
minimal cut set Aj is the root of the corresponding tree T,3+,. On the other hand, not
any generalized cycle is a regular cycle. For example, the polynomial p(ý) = (e-' -
e-' )(e 2 

- e2) has no regular cycles, but is has a generalized cycle b = {/31,/32} =
{27r/3, 47r/3}. Indeed, this polynomial has three zeros on the period: 7r/3, -7r/6, 57r/6 [
T. The set A, = {-7r/6, 57/6} is a minimal cut set for the point /31 + 7r, A2 = {7r/3} is
a minimal cut set for /2 + 7r, and p(AI) = p(A 2 ) = 0. Roughly speaking, each cyclic set
f31,.. ., Pfj} has a unique corresponding cycle (the family of zeros is { ± +77r,.... u,+7r})
and a variety of generalized cycles (all possible sets of zeros {f1, A, , A,,}, where Aj is an
arbitrary minimal cut set of the tree T3+r, j 1,. . . , n). Note, that if at least one set
A, differs from the root /j + 7r, then it necessarily contains a pair of symmetric roots of
p. Therefore, if the polynomial p has no symmetric roots, then all its generalized cycles,
if there are any, are regular cycles.

For any trigonometric polynomial p and any finite subset Y a{,... , an} C T
we denote pp(Y) = (fI 1 IPp(cq)1)1/n. This is a multiplicative function on the set of
trigonometric polynomials.

Now we formulate the criterion of stability of subdivision process.

Theorem 2.2 Suppose a refinement equation [mI] has a Cc'-solution for some 1 > 0;
then the process {m} converges in C' if and only if the mask m satisfies (1.2) and for
any generalized cycle b of the mask m we have p,(b) < 2-1.

In particular, for 1 = 0, this means that a subdivision process {m}, whose refinement
equation has a continuous solution, converges if and only if pm.(b) < 1 for every general-
ized cycle b of the mask. Another corollary is Condition (2) from the Section 1. Indeed,
if a mask has neither symmetric roots nor cycles, then it has no generalized cycles either.
Hence, by Theorem 2.2, the subdivision process must converge.

Example 2.3 Consider a mask
m(ý) = (0.2 + 0.5e-'6 + 0.3e2i4)(e*-i - e!) 2(e-2- e-2)i (2.1)

The corresponding equation [m] has a C0-solution, this is shown in Example 4.5. The
polynomial m has a unique generalized cycle b = {27r/3,47r/3}, the same as in the
previous example, with the same sets of zeros A1 = {-7/6, 5r/6}, A 2 = {7r/3}. Actually
this is not one, but two coinciding generalized cycles, if we count roots with multiplicity.
We have (pm(b))2 =

m(- 3 3 m(--• 1-) 0- 2 -0.1 v/3'i) .1 1•. 2W+0 1 IO'L .4 e .4e-T - 1.12 > 1.
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Hence the subdivision process {m} diverges.

3 Statement of the problem
Most examples of divergent subdivision schemes (having smooth refinable functions) are
constructed for some special class of masks. These are either "unload" masks of the form
m(ý) = p(ný) for some polynomial p and an odd integer n, or, at least, masks whose
associated matrix B = {c2i-j} ,j{0,....Nj have a multiple eigenvalue 1. The divergence
of such schemes is well known and does not require any special criterion. A natural ques-
tion arises; whether one really needs the criterion of Theorem 2.2 to determine divergent
processes? Maybe the family of generalized cycles is too wide to describe unstable sub-
division schemes. In general there is no evidence that the condition p, (b) > 1 can be
combined with the existence of a smooth solution for the mask m. In this paper we are
going to show that Theorem 2.2 indeed characterizes the family of unstable subdivision
processes properly. We show that each generalized cycle can cause the divergence of a
suitable scheme. On the other hand, we will see that every converging subdivision scheme
can be "spoiled" by some generalized cycle.

4 Preliminary results. Reductions of masks
To construct examples of divergent processes we need some auxiliary results. The first of
them establishes two properties of cyclic sets. The proof of this lemma is an easy exercise
for the reader.

Lemma 4.1 a) Let b be a cyclic set and a E T. Then for the polynomials pi(O) =
e-C - e-c and P2(e) = e-2iC - e-ia we have pp,(b) = pp2(b).
b) Let b, and b2 be cyclic sets and p(s) = -flEb, (e-iý +e-`0). Then we have: pp(b 2 ) 1
if bl • b 2 , and pp(b 2) = 2 if bi = b 2.

Now turn back to the subdivision schemes. For a given integer I > 0, a mask m,
and a function f E £E, denote v,(m, f) = - limn,, log2 IITn[f(0)]Ijc/n, where T is
the subdivision operator associated to m (we set log 2 0 = -c). The value v,(m)=
inff E v1(m, f) is the degree of convergence of the process {mn} in the space C'.

For every mask m we have vi(m) < I + 1 (see [3]). Furthermore, it was shown in [3]
and [2] that a process {m} converges in C' if and only if v,(rn) > 1. In particular, the
inequality v,0 (m) > 0 means that {m} converges in C. Let L be the maximal integer
such that {m} converges in CL (if the process {m} does not converge in C, then we
nevertheless set L = 0). The value VL(in) is said to be the degree of convergence of the
process {m) and denoted in the sequel by v((m). If v(mni) = V(m2), then v1((mr) = v,(m 2 )
for any 1 > 0.

For a given refinement equation [in] denote by L(m) the maximal integer L such that
the corresponding refinable function p belongs to COL. If this equation has no continu-
ous compactly-supported solution, we set L(m) = -1. The smoothness of the refinable
function p is the value s(m) = L + h, where h is the Holder exponent of the Lth deriv-
ative •p(L) on ]R. It is well known that a refinable function belongs to C' if and only if
s(in) > 1 (the equality s(m) = I is impossible). In particular, a refinement equation has
a Co-solution if and only if s(m) > 0.
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Now we can describe the procedure of reduction of subdivision schemes introduced
in [11]. This reduction makes it possible to get rid of both symmetric roots and cycles.

4.1 Eliminating of symmetric roots

Let p(s) be a given trigonometric polynomial (let us remember that we consider poly-
nomials without positive powers). Assume that p possesses a pair of symmetric roots

{a/2, 7r + a/2}. The transfer from p(ý) to the polynomial p,,(ý) - is said
to be a transfer to the previous level. The inverse transfer from p, to p is a transfer
to the next level. So a transfer to the previous level reduces a pair of symmetric roots
a/2, -7r + a/2} to the one root a.

Proposition 4.2 Let a mask fi be obtained from a mask m by a transfer to the previous
level. Then s(fn) = s(m). Moreover, v(fi) = v(m), whenever 1(ffi) = 1(m).

(The constant 1(m) responsible for condition 1.2 was defined in Section 1). This implies,
in particular, that the reduced equation [fh] possesses a smooth compactly supported
solution if and only if the initial equation [m] does; and the same true for the convergence
of the corresponding subdivision schemes. Thus, a transfer to the next (previous) level
does not change the smoothness of solutions. It also respects the rate of convergence of
subdivision processes, unless this transfer does not violate condition 1.2 (a transfer to the
previous level may increase the value l(m)). Using this Proposition one can consequently
eliminate all symmetric roots of a given mask.

4.2 Elimination of regular cycles

Let a polynomial p possess a cycle b. The transfer from p(s) to the polynomial P(ý) =

()/ Hf1,Eb(e-i + e-i3) is called an eliminating of a cycle.

Proposition 4.3 Let a mask ff be obtained from a mask m by eliminating of a cycle
b. Then s(ih) = s(m) and v(m) = max{v(rih), p..(b)}.

Thus the equation [in] possesses a smooth compactly supported solution if and only if
the equation [fii] does. Moreover, the process {m} converges in C1 if and only if the
process {rih} does and in addition pm(b) < 2-1.

See [11] for the proofs of Propositions 4.2 and 4.3. Now it becomes clear how to estab-
lish Theorem 2.2. First we consequently eliminate all symmetric roots. By Proposition
4.2 it does not change neither the smoothness of solution nor the rate of convergence (if
the initial mask satisfied condition 1.2). Moreover, by Lemma 4.1 this process respects
the constants pmo(b) for all cyclic sets b. The final mask has no symmetric roots, hence
it can have only regular cycles. Then we eliminate all regular cycles (refereeing to Pro-
position 4.2) and obtain a mask satisfying Cohen's criterion, whose subdivision process
does converge. This line of reasoning also allow us to eliminate directly all generalized
cycles as follows.

4.3 Eliminating of generalized cycles

Let a polynomial p possess a generalized cycle b with corresponding sets of zeros
A,,..., An. The transfer from p(ý) to the polynomial 5(ý) = p(*)/H EaAjj=I ..... (e-i-

e-"') is called an eliminating of a generalized cycle.
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Proposition 4.4 Let a mask fni be obtained from a mask m by eliminating of a gener-
alized cycle b. Then s(fh.) = s(m) and v(m) = max{v(ri), pr,(b)}.

Proof: After a suitable sequence of transfers to the previous level all the sets of zeros
A,1 ,... , A,, drop to the corresponding roots /31 + 7r, ... , f0, + 7, and b becomes a regular
cycle. By Lemma 4.1 this does not change the value pmo(b). Now it remains to apply
Proposition 4.3. o
Example 4.5 Consider again the mask m(ý) from Example 2.3. After eliminating the
generalized cycle b { -, } we obtain the mask f(i ) = 0.2 + 0.5e-'C + 0.3e 2 .
Since all the coefficients of in are positive, it follows that the equation [i] has a C0 -
solution and, moreover, the corresponding subdivision process {?h} converges (see, for
instance [1]). Now applying Proposition 4.4 we see that the initial process {m} diverges,
since pm(b) = 1.12. Let us note, that the matrix B corresponding to the mask m
(B = {c2-j}ijje{o,....st) has the eigenvalue 1 with multiplicity one and has no other
eigenvalues on the unit circle. So the divergence of the subdivision scheme in this case
does not follow from the well-known argument of multiple eigenvalues.

5 Unimprovability of criterion. Examples of divergent schemes

Now we are going to see that Theorem 2.2 gives a full description of divergent subdivision
schemes having smooth refinable functions. This means that all possible cases of the
criterion of convergence are realized on suitable masks. For the sake of simplicity we
formulate this result for the convergence in the space C, i.e., for the case 1 = 0.

Theorem 5.1 Let b = {,l,...,I3n} be a cyclic set and let A,,.. .,A, be arbitrary
minimal cut sets of the trees T,3+,, ... , To,+, respectively. Then there exists a mask
m(ý) such that

1) m(A•) = 0, j = 1,... ,n, i.e., b is a generalized cycle of the mask m, and Aj are
its sets of zeros;

2) the equation [m] has a Co-solution, but the subdivision process {m} does not con-
verge in C;

3) after eliminating of the generalized cycle b this process becomes converging in C.

Proof: Consider a mask p(ý) = (1 + e-i)/2a(ý) such that dega a> 2, and the subdivi-
sion process {p} converges in C. To obtain such a mask it suffices to take an arbitrary
polynomial a(s) with positive coefficients such that a(0) = 1. Now we use the fact that if
the process {p} converges in C, then it will still converge in this space after all sufficiently
small perturbations of the coefficients of a(ý) preserving the condition a(0) = 1 (see [3]).
Thus, with possible perturbation of the coefficients, we assume that the trigonometric
polynomial a has no real roots and that the value Pa (b) is irrational. Such a perturb-
ation exists by the mean value theorem, because pa(b) is a continuous function of the
coefficients of a(ý). This implies, in particular, that, pa(b) > 0 and hence pp(b) > 0.
Now take the polynomial q() = ...... j=1......n(e- - e-'). By Lemma 4.1 we have
ppql(b) = 2rpy(b) for every r > 0. Consequently there exists a nonnegative integer r
such that ppql(b) > 1. Take the smallest such integer ro and denote & = aqO°-1 and
S = pqro-I (if ro = 0, then we put & = a, P = p). Let us remark that the case pp (b) = 1
is impossible, because this value is not rational, therefore p1 (b) < 1. Since b is the only
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generalized cycle of the polynomial P, therefore, by Proposition 4.4, the subdivision pro-
cess {W3} converges. Now make a small perturbation of the coefficients of the polynomial
& after which the process {f} still converges, and the value pfq(b) is still bigger than 1,
but the polynomial & does not have real roots. Then denote fh = p, m = rhq. We see that
the mask m has a unique generalized cycle b, and this cycle has sets of zeros A,,..., An.
Since pn(b) > 1, the process {m} diverges, however removing this generalized cycle we
obtain the converging process {rh}. This proves the theorem. EJ
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